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ABSTRACT: Arsenic concentrations from 20 450 domestic wells in
the U.S. were used to develop a logistic regression model of the
probability of having arsenic >10 μg/L (“high arsenic”), which is
presented at the county, state, and national scales. Variables
representing geologic sources, geochemical, hydrologic, and physical
features were among the significant predictors of high arsenic. For U.S.
Census blocks, the mean probability of arsenic >10 μg/L was multiplied
by the population using domestic wells to estimate the potential high-
arsenic domestic-well population. Approximately 44.1 M people in the
U.S. use water from domestic wells. The population in the
conterminous U.S. using water from domestic wells with predicted
arsenic concentration >10 μg/L is 2.1 M people (95% CI is 1.5 to 2.9
M). Although areas of the U.S. were underrepresented with arsenic data,
predictive variables available in national data sets were used to estimate high arsenic in unsampled areas. Additionally, by
predicting to all of the conterminous U.S., we identify areas of high and low potential exposure in areas of limited arsenic data.
These areas may be viewed as potential areas to investigate further or to compare to more detailed local information. Linking
predictive modeling to private well use information nationally, despite the uncertainty, is beneficial for broad screening of the
population at risk from elevated arsenic in drinking water from private wells.

■ INTRODUCTION

Domestic wells (private or homeowner wells) are the dominant
source of drinking water for people living in rural parts of the
United States.1 Geogenic arsenic affects many domestic wells in
the U.S.2,3 and is thus a national public health concern.4−6

Recent work in the U.S. indicates that low-level arsenic may
impact fetal growth7 and may be related to preterm birth.8 In
the U.S., domestic well water quality is generally not regulated.
This means that it is largely up to the well owner to understand
the arsenic hazard and take steps to mitigate any exposure risk.
To understand the risk and to make progress on reducing
exposure in a systematic way, we need better estimates of the
population affected by high arsenic concentrations.
About 44.1 M people in the conterminous U.S.14% of the

total populationrely on domestic wells for household water
use.5 The U.S. domestic well population tends to mimic the
general population distribution throughout the country, serving
people not connected to public supply distribution systems and

people in rural areas.5 Because high concentrations of arsenic in
water are not evident by taste or smell, the only way to know
how much arsenic is in drinking water is to have it tested, a
precaution utilized infrequently by domestic well owners.2,6

Studies of arsenic in domestic wells in the U.S. commonly
refer to percentages of wells with arsenic >10 μg/L, the U.S.
Environmental Protection Agency (USEPA) Maximum Con-
taminant Level (MCL), based on observations from various
databases.2,3,7−10 National-scale maps of arsenic show either
observation points or interpolated concentrations where gaps in
spatial coverage are evident.8,9,11−16 Estimates of the population
in the U.S. using domestic well water with high concentrations
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of arsenic may not accurately represent the population at risk if
they do not account for unsampled areas.
A modeling approach can directly incorporate potentially

important numeric or categorical factors, such as geologic,
geochemical, physical, and hydrologic/climatic data, that are
available at the national scale. Although local- to regional-scale
models have been developed for arsenic in groundwater in the
U.S., indicating strong regional (102 to 103 km2) to local (10°
to 101 km2) patterns,10,15,17−24 and some have looked at
national occurrence of arsenic,2,8,11−13,16 few studies have
attempted to scale these factors upward to a national
level,8,10,13,15 such as has been done for nitrate25,26 and
atrazine.27

Arsenic in groundwater reflects geologic sources, aquifer
geochemistry, and national-to-local scale processes, such as
climatic, physiochemical, and geochemical variation.12,24

Primary geochemical factors generally include (1) reductive
dissolution and desorption, (2) pH-driven desorption, (3) ion
concentration in low recharge areas, and (4) ion competi-
tion.12,24

For example, arid oxidizing environments, as in the
southwest part of the U.S. are susceptible to increased
likelihood of high arsenic through evaporative concentration,
increasing pH, and increasing dissolved solids along flow paths,
and redox differences,17,28,29 whereas humid reducing environ-
ments also are related to increased likelihood of high arsenic,
such as in the northeast U.S, where alkaline pH, reducing
environments, and dissolution of sulfide minerals are
important.30−35

This understanding of the controls on high concentrations of
arsenic in various parts of the U.S. can be applied to other,
unsampled parts of the U.S. The extent to which these and
other factors interplay across the U.S. (to produce high arsenic
groundwater) is a knowledge gap that this study seeks to fill. By
using a model to predict the probability of high arsenic, we take

advantage of previous understanding of regional processes and
apply it in a multivariate sense to areas that have not been
characterized, similar to approaches used elsewhere.36

There are a number of challenges associated with modeling
concentrations of arsenic in private wells. Available data on
concentrations of arsenic in domestic wells in the U.S. are
simultaneously rich in number but spotty in geographic extent.
While we understand many of the processes that control the
presence of arsenic in groundwater and wells, we do not yet
understand the complex interplay of factors that lead to high
concentrations in some areas. For example, wells in close
proximity to one another (10° to 101 m) may produce water
with vastly different concentrations of arsenic. Another
potential modeling challenge is the 3-dimensional aspect of
groundwater, where adjacent domestic wells draw water from
distinct aquifers, one overlying another, with differing
composition and geochemical properties.37,38

The goal of this paper is to produce estimates of the
population of domestic well users with high arsenic
concentrations in their drinking water at the national scale.
We use a model to predict the probability of well water arsenic
concentrations greater than 10 μg/L (the USEPA MCL) across
the U.S. using geologic, geochemical, and hydrologic
information. Information gained from model generation can
improve our understanding of important spatial and physical
features that contribute to high arsenic concentrations in
domestic wells and will be a first attempt to geographically
describe the potentially affected population based on a national-
scale predictive model. Using domestic well arsenic data and a
national-scale modeling approach will expand our knowledge of
potential exposure to arsenic in drinking water from what is
currently available only from regional- and local-scale models
and will allow for comparisons between regions.

Figure 1. Locations of domestic wells and As concentration ranges for data used to develop the logistic regression model.
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■ MATERIALS AND METHODS

Arsenic in Private Well Water. Arsenic concentrations
from 20 450 U.S. domestic well samples (Figure 1; Table 1)
collected between 1970 and 2013 were used to develop our
model. Concentrations of arsenic from 18 700 domestic wells
and other ancillary data, such as latitude and longitude were
obtained from the USGS National Water Information
System.39 Additional arsenic concentrations from domestic
wells in Maine (750 wells) and Minnesota (1000 wells) were
used.40,41 The data representing arsenic concentrations are
variably clustered but declustering was not applied because
potential biases were unclear and well-to-well variability in
arsenic concentrations was large. Also, it is assumed that, in
general, the wells were not specifically installed to monitor
arsenic, so the clustering is random with respect to arsenic.
Further, predicting an exceedance of a threshold as was done
here (arsenic >10 μg/L) has the effect of de-emphasizing high
concentrations and also high-arsenic events are rare, so it is
reasonable, if not desirable, to retain data.
Several preliminary data processing steps were undertaken. If

a given sample had results from both filtered and unfiltered
samples, the unfiltered result was preferentially retained. Where
there were multiple results per site (about 15% of sites), only
the maximum arsenic concentration, being the most note-
worthy value, was retained. Arsenic concentrations were
converted to a binary variable of less than or equal to
(nonevent) and greater than (event) 10 μg/L, with 0 as a
nonevent and 1 as an event for use in logistic regression
models.42 Measurements with reporting levels higher than 10
μg/L were not used because it is not possible to determine
whether they were higher or lower than the 10 μg/L threshold.
We randomly selected a “hold-out” data set (about 15%) to

set aside for model testing.
Training and testing data sets used to develop the arsenic

probability model had identical minimum and percentile
statistics and similar maximum concentrations (Table 1).
Event statistics (percent >10 μg/L) for the two data sets also
were similar.
Considerable spatial variability in arsenic concentrations

across the U.S. is characterized by patterns of high
concentrations in coastal New England, eastern Pennsylvania,
the upper Midwest, southern Idaho, West Texas, and parts of
the Southwest (Figure 1), among others. Processes that affect
high concentrations vary but often are a mix of factors that shift
in importance depending on the area. For example, oxidation of
sulfides, evaporative concentration, and pH-driven desorption
may be more important in the southwest, whereas sulfide
mineral sources and reductive dissolution may be more
important in humid regions.12,13,17,43 Also, specific crystalline
bedrock types in New England, black shale in Ohio, and specific
glacial aquifer source materials (from various Pleistocene glacial
lobes in the Midwest) also have been associated with arsenic in
groundwater.12,13,30,44−46 Sulfide enriched sandstones in

Wisconsin47,48 and geothermal sources and volcanic rocks in
New Mexico can be sources of high arsenic concentrations.12

Source- and Process-Based Extrapolation. Potential
factors that might influence arsenic concentrations in ground-
water were identified by literature review. Digital data sets for
these factors that were available at the national scale were
assembled to test for significance as independent variables in
the logistic regression model (Supporting Information SI 1). A
Geographic Information System (GIS) was used to overlay the
point data set of wells with these potential independent
variables resulting in the assignment of the full set of
independent variables to each well. In cases where factors
related to sources or processes were not available directly as
variable layers, related national-scale data layers were tested as
potential surrogates (e.g., areas of tile drainage to indicate
aquifer hydraulic properties). Model variables fall into four
major groups: (1) geologic and geochemistry variables, such as
bedrock and surficial geologic units, and soil geochemistry
concentrations; (2) hydrologic variables, such as precipitation,
evapotranspiration, and recharge to groundwater; (3) process
variables, such as position in a watershed, aquifer permeability,
and water table depth; and (4) other features, such as elevation,
slope, land use, and percent of areas with tile drainage.

Logistic Regression Model. We used logistic regression
(LR), a linear classifier that has been widely used in studies to
simulate arsenic probability in groundwater, to generate models
of arsenic concentrations greater than 10 μg/L, the USEPA
MCL for arsenic.49−51 It is well suited to use with a heavily
censored response variable (groundwater arsenic) and for
identifying general controlling factors, such as sources and
processes. The form of the equation has been presented
previously.18,51 We used backward stepwise logistic regression
and parameters were retained if they met criteria for inclusion
based on Akaike’s Information Criteria and Wald p-values (p <
0.05). Although LR may have limitations with nonlinearity of
independent variables, it can provide much insight into the
importance of those variables51 and is not as prone to over
fitting as tree-based approaches, which can reduce generality52

despite potential higher sensitivity.
A total of 321 potential individual variables were tested for

significance as predictors in the LR models, most of which were
binary geologic and other variables (Supporting Information SI
1). Independent variables were selected for inclusion by
running multiple LR iterations and comparing results of
automated selection procedures (backward, forward, or
stepwise selections) with unspecified selection of variables.
The set of variables ultimately selected had significance in most
(or all) of the tested models. Potential multicollinearity was
addressed by removing variables with a large variance inflation
factor (generally greater than 4). In part, because few (11%)
arsenic observations had concentrations greater than 10 μg/L
(events), the ability to correctly predict events (sensitivity) was
low. Sensitivity is mainly a function of group size (number of
events), which is controlled by probability threshold; however,

Table 1. Summary Statistics of Arsenic Concentrations in Training and Testing Datasets Used to Develop the Arsenic >10 μg/L
Logistic Regression Model

concentrations of arsenic, μg/L

percentiles

dataset N percent >10 μg/L minimum 10th 25th 50th 75th 90th maximum

training 17 355 10.9 <1 <1 <1 2 5 11 2900
testing 3095 10.4 <1 <1 <1 2 5 11 2140
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the receiver operating characteristics (ROC) curve integrates
over all thresholds. High well-to-well arsenic variability and
missing variables also contribute to low sensitivity.18,26

Several regression model fit criteria were used to assess fit of
the overall model. Classification tables for selected cut-points
were used to provide information on model accuracy by
showing overall correct classifications, model sensitivity, and
specificity, false positives, and false negatives. The area under
the ROC curve (AUC), indicated numerically by the c statistic,
showed how well the model discriminated between observa-
tions at different prediction probabilities. Values of the c
statistic close to 0.5 indicate no predictive power and between
0.8 and 0.9 are considered excellent.51 The pseudo r-squared
value is a goodness-of-fit statistic for logistic regression, similar
to the r-squared value in ordinary least-squares regression, in
that larger values between 0 and 1 indicate greater improve-
ments to the model over a model with no predictors.53 R-
squared values for LR are not as easy to interpret as for linear
regression; for example, values can be close to 0 for models that
fit well.54 The “percent deviance explained,” as the difference
between the −2 log likelihood of the specified model and the
intercept-only model, divided by the −2 log likelihood of the
null model, also is presented as a measure of model
performance (Table 4).52

The influence of individual observations was assessed by
using output from the influence diagnostics routine within the
SAS Institute’s Logistic procedure, such as the standardized
Pearson chi-squared residuals and leverage.55,56 Model statistics
were compared with and without potentially influential
observations. Potential outliers were mapped and inspected;
however, we did not identify a systematic influence of

observations. We also examined graphical output from the
Logistic procedure with influence option, as described in
Supporting Information SI 5.

Layered Aquifers. The presence of layered aquifers, such
as unconsolidated sand and gravel of glacial or alluvial origin
above porous or fractured bedrock might obscure the arsenic
signal by aquifer type in the regression models. This is
particularly true if the concentrations of arsenic in the layered
aquifers are significantly different.57 For the 82% of 20 450
wells where some kind of aquifer information was available in
the USGS NWIS database, we developed a methodology
(Supporting Information SI 2) to look at distributions of
arsenic concentrations greater than 10 μg/L by state and
generalized aquifer. Where domestic wells were located in
aquifers that differed by vertical position (layered), the aquifer
with the largest percentage of domestic wells with high arsenic
was flagged as the potentially dominant domestic well aquifer.
Areas with potentially dominant aquifers were examined
visually in a GIS and evaluated based on other criteria
(Supporting Information SI 2) to decide whether to take action
by removing wells (that could potentially confound the arsenic
“signal”) for the LR analysis. From this evaluation, we removed
208 well records from five states that met the criteria
(Supporting Information SI 2) for removal. A comparison of
regression results between the full data set and the data set with
these 208 wells removed showed no improvement attributable
to this accounting for layered aquifers, probably because the
adjustment, which pertained specifically to layered aquifers,
ultimately affected only about 1% of the data.

Private Domestic Water Use. At the level of U.S. census
block groups (BG), the mean probability of arsenic greater than

Figure 2. Probabilities of (a) arsenic >10 μg/L (b) 95-percent confidence lower bound for arsenic >10 μg/L; and (c) 95-percent confidence upper
bound for arsenic >10 μg/L.
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10 μg/L (Prob_As10; eq 1) was multiplied by the population
using domestic wells (Pop_Wells) to estimate the potential
population using domestic wells with high arsenic concen-
trations (PotentialPop_As10). The mean probability of arsenic
greater than 10 μg/L was generated from the arsenic
probability map using the “zonal statistics as table” tool in
ArcMap (release 10.1, Environmental Systems Research
Institute, Redlands, CA) where the zones were block groups
with statistic type of mean. We estimated 2010 block-group
populations that used domestic wells for water supply by
multiplying 2010 census block-group populations58 by the
percentage of block-group populations that used well water for
domestic use according to the most recently available
information (1990) on that statistic from the U.S. Census
Bureau.59 Although that percentage (of block-group popula-
tions using wells for domestic use) has undoubtedly shifted
over the 20 years between 1990 and 2010, the change is no
more than 20% for 80% of U.S. counties (http://waterdata.
usgs.gov/nwis/wu). On a statewide basis, Michigan saw the
largest increase (9%) in the percentage (5 counties increased by
more than 50%) and Arkansas the largest decrease (−19%; 7
counties decreased by more than 50% for domestic use).
Estimates of populations with high arsenic concentrations in
their well water by block groups are aggregated to county and
state levels by using county and state code information in
ArcMap. Uncertainty, as 95% upper and lower confidence limits
for high arsenic probabilities, also was mapped and used in
combination with block-group populations using well water for
domestic water supplies to get upper and lower bounds on the
estimates of potential high-arsenic population.

_ = _ × _PotentialPop As10 Pop Wells Prob As10(BG) (BG) (BG)

(1)

■ RESULTS AND DISCUSSION
Estimates of the Probability of High Arsenic. Two

models initially were developed for arsenic >10 μg/L: a
complex (67 variable) model with all significant predictor
variables at α = 0.05 and a simpler (42 variable) model with
significant predictor variables at α = 0.001. The LR models had
log likelihood ratio p-values that indicated a highly significant
model (p < 0.0001) for arsenic >10 μg/L. Because the simple
model performed similarly to the complex model according to
nearly every metric, the simple model was used for estimating
probabilities for this study (Supporting Information SI 3).
Hotspots where the probability of As > 10 μg/L in domestic

well water can exceed 0.5 (Figure 2) generally reflect areas in
the U.S. with high observed concentrations including New
England (predominantly Maine and New Hampshire), a band
in the upper Midwest, the southwest (most notably Nevada,
southern Arizona, southern and central California, and isolated
regions in all western states), and southern Texas.42

Probabilities of As > 10 μg/L are less than 0.5 throughout
most of the southern Midwest and the east except for New
England and coastal areas. Maps of the lower and upper
confidence bounds convey additional information to support
the probability estimates.42

Predictor Variables. Many factors predicted high concen-
trations of arsenic in groundwater in the U.S. At the national
scale, the most fundamental were climate-related. The top two
variables based on standardized coefficients were precipitation
(negative coefficient) and recharge (positive coefficient)
(Supporting Information Table 3), consistent with findings

from national-scale occurrence studies and other work that
show that arsenic is related to climate regime and that the
majority of high arsenic concentrations are found in the more
arid western half of the U.S.2,3,10,15 Thus, we interpret the
inverse relation with precipitation as a partial indicator of
climate regime. Coupled with other factors in the models such
as stream density, base-flow index, slope, and relief, we account
for humid to arid climate regions. The positive relation with
recharge, coupled with other model variables, is interpreted as a
potential mechanism for reductive desorption and (or)
dissolution of arsenic from iron oxides.15 It also may represent
cycling of wetting and nonwetting conditions that can flush
arsenic after periods of low or no recharge,60 possibly more
important in the eastern U.S.
As in previous studies,15 the variable precipitation minus

potential evapotranspiration (PMPE) was significant in some of
our models but in our best models, precipitation and recharge,
as determined in model testing, produced better models.
Studies that identified PMPE15 or precipitation10 as primary
variables (inverse relation) also identify secondary variables
such as pH (in arid regions) and iron (humid regions) or
evapotranspiration as important. In our model, the positive
relation with recharge (like iron) provides a mechanism for
dissolution of arsenic-containing iron oxides and (or)
desorption of arsenic from iron oxides. Also, because there
are no national-scale models of iron in groundwater for
domestic wells, we did not use that variable in our model, given
that our goal was to map arsenic probabilities for the
conterminous U.S. (CONUS). We use regions of glaciated
terrain, bedrock geology, base-flow index, slope, relief, stream
density, and other features, to further differentiate arid climate
factors. Stream density (positive coefficient) is interpreted to
indicate a correlation with discharge areas, and increasingly
anoxic conditions, particularly in humid parts of the U.S.
Anoxic conditions have been related to reductive oxyhydroxide
dissolution (e.g., dissolved iron and manganese) and elevated
arsenic at regional and national scales.15,46

Additionally, other variables representing processes and
mechanisms related to arsenic mobility have improved our
u nd e r s t a n d i n g i n o t h e r s t u d i e s a n d i n t h i s
one.10,12,15,17−20,22,23,36,43,45,61 Features such as soil hydrologic
group (hga, negative coefficient), soil tile drainage (percent_ti,
positive coefficient), and water table depth (wtdepave, negative
coefficient) collectively suggest surrogates for long residence
time, poor drainage, and areas of groundwater discharge, which
are consistent with findings from other studies in the U.S.10,15,36

and elsewhere.10,36,62

The model used in this study also identifies geologic units63

that are significant nationally as well as locally. There are
geologic units where predictions of high arsenic concentrations
in our national model are corroborated with observations of
high arsenic concentrations, such as the Triassic marine
stratified sequence (Tr) in northwestern New Jersey, and
where probabilities from our model are similar to results from
regional models, such as the Quaternary marine stratified
sequence (Q) in the southwestern basin and range area17 and
the Central Valley of California.43

In one regional study, arsenic in domestic wells has been
associated broadly with underlying Paleozoic sedimentary
bedrock units in Illinois, Indiana, Ohio, Michigan, and
Wisconsin but it was not directly associated with bedrock
subcrops.32 One exception was in southwest Ohio where
Silurian carbonates may be related to high groundwater
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arsenic.32 Although similar geologic units in Ohio were not
significant in this model, areas of northern and central Ohio
with low probabilities of having arsenic concentrations >10 μg/
L were associated with the Upper Silurian marine stratified
deposits (Supporting Information S3) unit. In other cases, local
aquifers, such as the Mahomet aquifer in Illinois,34,35,64 were
not represented in our model, but the map of probabilities from
our model reflects a general likelihood of having arsenic
concentrations >10 μg/L in these areas. Overall, the
probabilities of arsenic concentrations >10 μg/L in Illinois
are similar in pattern to those published elsewhere.65

For various reasons (data gaps or model scale), some
geologic units lacked significance and were not included in the
model but may be locally important at predicting high arsenic
concentrations. For example, in North Carolina, the variable for
Cambrian eugeosynclinal (deep marine environment) depos-
its,63 associated with arsenic-containing slates, was not
significant, but variables representing nearby rocks described
as Paleozoic mafic intrusive rocks and Cambrian volcanic rocks
were significant. Local model results include faults, specific rock
types, and well depth as factors related to high arsenic in
groundwater underlain with all three rock types in North
Carolina.20,23

The use of bedrock geologic information to help understand
the groundwater arsenic hazard in unsampled areas has
precedent. In New England, generalization of rock groupings
had previously resulted in predictions of high arsenic in some
areas that were not known to have high arsenic or where
observations suggested lower concentrations of arsenic.18 A
recent study of arsenic in private wells in parts of southeast and
north central Connecticut indicates that there are high
concentrations of arsenic in previously unsampled areas.66

Our model predicts high arsenic in parts of eastern New
Mexico and northern Wisconsin where domestic well maps
indicate no or sparse data;67 these may be areas to watch as new
data become available.
Geochemical information from the National Soil Geo-

chemical database,68 particularly concentrations of antimony,
arsenic, and beryllium, in the C-horizon, also were among the
top predictors. These data indicate national-scale geochemical
and mineralogical patterns that relate to underlying soil parent
materials and potentially aquifer materials.69 Antimony and
arsenic commonly occur in sulfide minerals. In the model
training data and in the predictor variable data for the
conterminous U.S., antimony and arsenic in C-horizon soils
correlated strongly (Spearman’ rho = 0.69 and 0.74,
respectively). Antimony and arsenic also can substitute for
sulfur in metal sulfide minerals, forming arsenides or
antimonides; or can partially substitute for other metals in
sulfides, as in minerals in the sulfosalt group.70 It is possible that
co-occurrence of antimony and arsenic sulfides in some areas
and the potential for arsenic to dissolve in groundwater leads to
the predictive power of the antimony variable. Another
possibility is that iron hydroxides may contain both antimony
and arsenic and that the arsenic can desorb from iron or
manganese oxides coatings on aquifer materials (under
reductive or alkaline pH conditions, particularly for pentavalent
arsenic)71 or dissolve (under reductive geochemical con-
ditions).24 Ion competition in some areas, such as in the
southwest or where road salt is used for deicing, may also
support desorption.72 Soil arsenic concentrations align
generally but not always with predicted probability of high
groundwater arsenic, suggesting that although this data layer is

a source indicator, there often are other variables influencing
probability estimates. Bismuth and molybdenum had negative
coefficients, indicating an inverse relation to arsenic probability.
Although relatively coarse in scale, these features are among the
most predictive (having high standardized coefficients) of the
variables. These results are consistent with a recent model of
the Central Valley of California.43

In addition to climate, geology, and geochemical variables,
other important predictor variables, as identified by standard-
izing (Supporting Information Table 3) regression coefficients,
include variables for average water table depth, slope, and relief.
Collectively, these variables capture effects of potential flow
path, recharge and discharge zones, and groundwater residence
time on arsenic concentrations. More specifically, important
arsenic mobility processes such as pH-driven desorption and
redox can be captured in a variety of surrogate variables that are
predictive of high arsenic concentrations.10,17,43,45,46,73,74 For
example, precipitation, recharge, stream density, and base flow
index (long-term percentage of groundwater discharge in
streamflow) suggest broad-scale (national) hydrologic con-
ditions that relate to groundwater flux and residence time,
which influences pH, which in turn influences concentrations of
arsenic.10,15,17,43

Model Performance. Model performance information
(Table 2) shows that overall accuracy (total correct

predictions) at the 0.5-probability cut point was 90% for both
training and testing data, indicating that the model validated
well. Other cut points could be used and may be warranted.
The cut point 0.2 also is shown in Table 2, indicating that lower
cut points increase sensitivity but decrease specificity and
overall percent correct. As expected, given the larger number of
nonevents compared to events, specificity is greater than
sensitivity for both cut points. The unadjusted Hosmer−
Lemeshow (H−L) statistic had a low p-value (0.0182)
indicating poor model fit, but this statistic is affected by large
sample sizes. After adjusting (increasing) the number of groups
for the H−L test because of the large number of observations
used (20 450), the H−L test p-value increased to 0.1086,

Table 2. Summary of model fit criteria and classification
tables for probability of As > 10 μg/L

metric training data testing data

N 17 354 3095
% deviance explained 20.3 19.2
ROC 0.81 0.82
pseudo r2 0.26 0.29
coefficient of discrimination 0.18 0.21
H−L probability 0.0035 0.1601
adjusted H−L p-value 0.1086
Cut Point = 0.2
% total correct 84.5 85.7
% sensitivity 52.3 50.5
% specificity 88.4 89.8
% false positive 64.6 63.5
% false negative 6.2 6.0
Cut Point = 0.5
% total correct 89.9 90.1
% sensitivity 12.7 13.9
% specificity 99.3 99
% false positive 29.2 37.5
% false negative 9.7 9.2
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suggesting reasonable model fit.75 The H−L p-value for the
testing data set was 0.1601. The percent deviance explained was
20% for both training and testing data. The fact that model fit
criteria were the same or similar for the testing and training
data sets demonstrates that the model generalizes well to new
data, which increases confidence in the mapped probabilities.
The range in Pearson residuals for the As > 10 μg/L model is

−3.3 to 30.3, the 5th and 95th percentiles are −0.6 and 1.9, and
the median is −0.2 (Supporting Information SI 4). Darker
points (red and blue) show that values outside of the
“acceptable” bounds of ±354 are most frequent in the northeast,
with small clusters in Minnesota, Oklahoma, Idaho, Wash-
ington, and California. Very few residuals were less than −3.
Graphical results from SAS influence diagnostics reveal that

two observations are consistent outliers among the influence
and predicted probability diagnostic plots (Supporting
Information SI 5). When the model is run without these
observations, 18 points appear to be potentially influential.
Because there is negligible difference between model results
(Supporting Information SI 5) using (1) the full model, (2) the
full model less removal of the 2 most influential observations,
and (3) the full model less removal of the 20 most influential
observations, the full model is used without removal of any
values. Additional screening revealed that none of the
numerical variable values associated with these two observa-

tions were the maximum or minimum of the full data set, which
might have indicated erroneous variable assignment.
Further, the differences in logistic regression model results

when some wells were removed from the data set based on the
analysis of stacked aquifers were small. For predictions of
arsenic >10 μg/L, differences in the total number of correct
predictions and specificity were negligible; however, sensitivity
increased by 1% and the overall error rate decreased by 3.6%,
suggesting that this is an area of potential important
improvement for future efforts.

Estimates of the Domestic Well Population with High
Arsenic. Approximately 44.1 M people in the conterminous
U.S. use water from domestic wells (Figure 3a).5 The subset of
this population with estimated arsenic concentration >10 μg/L
(Figure 3b) is 2.1 M (4.8% of domestic well users); with 95-
percent certainty on the arsenic probabilities, the estimate is
between 1.5 and 2.9 M people (3.4−6.6% of domestic well
users) (Table 3).42 Broadly speaking, our model shows that the
parts of the U.S. with the greatest domestic well use are also
likely to be the parts of the U.S. with the greatest numbers of
domestic well use population with high arsenic in their well
water. Exceptions occur locally where there are high
probabilities of arsenic and small numbers of people using
domestic wells, or low probabilities of arsenic and large
numbers of people using domestic wells.

Figure 3. County-level (a) domestic well population and (b) domestic well population with As > 10 μg/L based on probability estimates.
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States with the largest estimated population using domestic
well water with arsenic >10 μg/L are Michigan, Ohio, and
Indiana with 0.193, 0.189, and 0.151 M people, respectively
(Table 3). States with the largest estimated percentages of
domestic well population with arsenic >10 μg/L are Maine
(18%), and New Hampshire and Nevada both at 14% (Table
3), which is more than 3% of the total statewide population

(Figure 4) in each of the three states. The county map of high-
arsenic population distribution within these states (Figure 3b)
shows that hotspots cover much of Maine except for eastern
and central counties; southeastern New Hampshire; and areas
of southwestern, eastern, and northern Idaho. In Maine and
New Hampshire, county estimates of populations with high-
arsenic domestic wells generally match those from other

Table 3. Estimates of Populations Using Domestic Wells with Arsenic >10 μg/L, and Lower and Upper Confidence Limits, by
state for the conterminous U.S.

population likely to have arsenic concentration >10 μg/L in domestic well water

95% confidence limit

state domestic well population % estimated population lower upper rank by population, descending

AL 539 394 0.5 2592 1750 3960 43
AR 144 434 0.8 1147 803 1696 48
AZ 218 170 7.8 16 979 13 637 20 902 30
CA 2 476 047 4.7 115 823 91 768 145 900 5
CO 311 619 4.6 14 339 11 705 17 607 31
CT 871 373 6.0 52 105 36 138 74 452 16
DE 185 267 5.4 9925 6643 14 737 34
FL 1 907 603 2.7 50 924 33 060 78 014 17
GA 1 530 125 2.3 34 969 23 251 53 637 22
IA 591 403 6.0 35 650 28 006 44 865 21
ID 431 945 11 47 041 38 491 57 021 18
IL 1 155 342 5.9 67 709 53 347 85 636 11
IN 1 658 685 9.1 150 858 115 385 195 482 3
KS 150 883 4.1 6168 5059 7511 39
KY 663 634 1.0 6707 4680 9744 36
LA 587 505 1.1 6464 4331 9681 37
MA 533 820 5.7 30 549 22 067 41 883 24
MD 1 069 848 3.9 41 276 27 202 63 107 19
ME 560 801 18 102 452 80 281 128 879 6
MI 2 675 773 7.2 192 747 151 408 246 037 1
MN 1 127 975 7.1 80 353 64 209 100 266 9
MO 883 261 1.2 10 242 7587 14 058 33
MS 446 129 0.6 2804 1959 4047 42
MT 285 143 8.2 23 269 18 006 30 042 27
NC 3 303 760 3.6 119 633 76 523 187 279 4
ND 49 355 4.1 2014 1591 2659 45
NE 345 966 5.0 17 399 13 593 22 252 29
NH 445 540 14 60 962 45 643 80 275 13
NJ 964 107 4.2 40 563 26 951 60 496 20
NM 303 139 10 30 990 24 485 38 647 23
NV 157 998 14 21 533 17 769 25 641 28
NY 2 046 039 3.2 66 265 47 992 92 295 12
OH 1 830 099 10 189 191 118 913 294 655 2
OK 315 670 1.4 4337 3392 5622 41
OR 606 611 4.3 26 051 20 233 33 612 26
PA 3 345 559 2.4 80 729 52 104 126 925 8
RI 112 941 1.3 1509 1145 1998 46
SC 1 152 116 2.4 28 131 18 768 42 146 25
SD 75 585 1.6 1182 900 1663 47
TN 538 259 1.0 5245 3448 8102 40
TX 2 440 586 3.9 95 455 74 590 122 294 7
UT 50 514 4.2 2131 1583 2816 44
VA 1 649 470 3.2 52 800 34 585 81 003 14
VT 181 611 5.3 9716 6988 13 363 35
WA 1 002 899 5.2 52 249 40 173 67 401 15
WI 1 644 873 4.4 72 670 58 722 90 438 10
WV 393 332 2.9 11 589 6309 20 661 32
WY 114 123 5.4 6215 5001 7761 38
Total 44 076 331 2 101 648 1 542 173 2 879 171 −
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studies18,76 (Figure 3a) but may overestimate the population in
parts of northern Maine.76 Some states have both relatively
large estimates of statewide populations (>100 000) and
comparatively higher percentages (>1%) of total state
populations with arsenic >10 μg/L (Figure 4). County-level
information indicates that 6 of the 10 counties with the largest
number of people with high-arsenic wells are in New England;
other top-10 counties are in Ohio, North Carolina, California,
and Idaho.42 States with the estimated lowest numbers of
people with high-arsenic wells are the Dakotas, Rhode Island,
Utah, and southeastern and south-central states, except for
Texas and those along the Atlantic coast (Figure 4; Table 3).
Comparing statewide estimates of populations with arsenic

>10 μg/L from this model with those calculated from various
published state-level information provides the opportunity to
evaluate the potential arsenic hazard at different scales and to
identify areas that may have been overlooked or otherwise not
identified as having a high probability of high arsenic in
domestic wells. In most cases, this meant multiplying statewide
estimates of the percent of domestic wells with high arsenic by
the domestic well population (Table 4). Some states have
estimates of the proportion of domestic wells with high arsenic
concentrations but generally do not provide confidence
intervals on those estimates. Out of the 10 states that we

found with information, 5 (Maine, Michigan, New Hampshire,
New Mexico, and Vermont) were within the bounds estimated
from this study, 3 (Illinois, Minnesota, and Texas) were above
the upper bound, and 2 (Connecticut and North Carolina)
were below but close to the lower bound. The estimates from
this study of the domestic well population with high arsenic by
county or state are the first nationally consistent, model-
predicted look at where the potentially most affected
populations are located throughout the U.S. (Table 4).

Uses and Limitations. We emphasize that although this
study resulted in estimates of the domestic well use population
that may have high arsenic concentrations in their drinking
water, those numbers should be viewed with an understanding
of the limitations of the study. We addressed model
uncertainties through use of confidence intervals on arsenic
probability estimates. Estimates of county-level domestic well
use are the basis for estimating the population affected by high
arsenic (arsenic probability), which also carry with them
uncertainty that is not easily quantified. Thus, the reported
error in the estimates does not reflect all potential error.
Well depth was accounted for broadly and indirectly by

selecting only domestic wells to train the model, thus
constraining the model to well depths used for domestic
supply. In some cases, wells may penetrate and draw water from

Figure 4. State populations and percent of state populations with arsenic >10 μg/L based on the probability modeling.

Table 4. Comparison of Modeled Estimates of Domestic Well Populations With As > 10 μg/L, and Estimates Made from Other
Sources

population likely to have arsenic concentration >10 μg/L in domestic well water

95% confidence limit

state domestic well population % model estimated number lower upper estimated from other source comparison to modeled estimate

CT 871 373 6.0 52 105 36 138 74 452 34 00066 lower
IL 1 155 342 5.9 67 709 53 347 85 636 127 00077 higher
ME 560 801 18 102 452 80 281 128 879 85 00078 same
MI 2 675 773 7.2 192 747 151 408 246 037 230 00021 same
MN 1 127 975 7.1 80 353 64 209 100 266 121 00079 higher
NC 3 303 760 3.6 119 633 76 523 187 279 76 00023 lower
NH 445 540 14 60 962 45 643 80 275 80 00080 same
NM 303 139 10 30 990 24 485 38 647 35 00067 same
TX 2 440 586 3.9 95 455 74 590 122 294 146 00081 higher
VT 181 611 5.3 9716 6988 13 363 900082 same
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different aquifers with different arsenic distributions; where
available, we used aquifer type information (in lieu of depth) to
assess the effects on the modeled probabilities and found
minimal effect. The outcomes of this national-scale study
include advancing our understanding of predictive factors by
confirming previously reported factors,3,8,10,15 identifying new
factors (geology and geochemistry variables), and identifying
gaps in predictive factors (e.g., well or aquifer depth and flow
path information).17,43 Also, a possible future refinement could
include regional interaction terms or spatially varying model
coefficients.
The major results of this study are estimates of the total

population in the conterminous U.S. potentially exposed to
high arsenic, based on a model of arsenic probability for
domestic wells. Many areas of the U.S. were underrepresented
with arsenic data in our study, such as parts of Iowa and New
Mexico, but through extrapolation, the model also identified a
potential arsenic hazard in these unsampled areas and potential
hotspots that may warrant further investigation. Further,
combining hazard information with data on the domestic well
population shows a potential for exposure. We reiterate that
these findings should be used cautiously and in conjunction
with more detailed local and regional information, where they
exist. These results can be used directly in future public health
activities, including targeting specific areas for additional testing
and national-scale ecological studies of potential human-health
outcomes, as has been done in regional studies.21,65,83,84

Anticipated future refinement of models and the methods
used here will serve to provide improved estimates of the
potential affected population.
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